获诺奖的“拓扑”:开启研究奇异物质大门
当温度发生改变时,常见物质相也会相互之间转变。比如水冰是由规整的晶体结构组成的,一旦温度上升,它就会融化,完成了从固相朝液相的相变。相比固相,液相是一种混乱程度较高的相。而当我们审视二维世界,我们发现了一个相当陌生的世界。在低温条件下,会发生一些奇异的现象。比如说,在这样的条件下,所有物质材料都会具备的基本属性之一的电阻突然消失了。
你会观察到这样的奇异现象:在超导体中,电流不会遭遇电阻,而在超流体中,一个涡旋永远不会减速慢下来,它会永远旋转下去。最早对超流体现象开展系统性研究的人是俄罗斯科学家卡皮查(Pyotr Kapitsa),时间是在上世纪的1930年代。当时卡皮查将氦-4冷却到零下271摄氏度并观察到了这种液体沿着容器壁向上流动的现象。换句话说,他观察到了超流体在粘度完全消失之后表现出来的诡异特性。
由于这项成就,卡皮查被授予了1978年度的诺贝尔物理学奖。自那以后,科学家们在实验室中已经创制出了数种不同的超流体。超流体液氦、超导薄膜、磁性薄层以及导电纳米线等只是当前正在开展大量研究的全新物质相的其中一部分。 双漩涡带来的答案
研究人员长久以来坚信,热力学扰动会毁坏二维平面内物质的所有有序性,即便是在绝对零度条件下也是如此。但在1970年代早期,戴维·索利斯和迈克尔·科斯特利茨在英国伯明翰相遇并决定一同对这一主流观点提出挑战。他们选定了二维平面内相变作为研究课题,按照他们后来两人自己的说法,索利斯这样做的原因主要是因为好奇,而科斯特立茨则完全是因为无知。他们的这次合作带来了对于物质相变的全新理解,并被认为是20世纪凝聚态物理学领域最重要的成就之一。
现在,他们的理论被称为“KT相变”(科斯特立茨-索利斯相变)或BKT相变,此处多出来的这个“B”代表瓦迪姆·贝里辛斯基(Vadim Berezinskii),这是一位已故的俄罗斯物理学家,他曾经提出过相似的理论观点。拓扑相变并非常规的相变,就像水冰和液态水那样的相变。在拓扑相变中发挥关键作用的因素是平面材料中的微小漩涡。在低温下它们会形成紧密的“对”。随着温度上升,相变发生了:这两个成对的小漩涡突然之间相互远离并各自在材料中独自运动。